Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence

نویسندگان

  • Magali Besse
  • Philippe Castany
  • Thierry Gloriant
  • M. Besse
  • P. Castany
  • T. Gloriant
چکیده

In this work, Ti–23Nb–0.7Ta–2Zr (TNTZ) and gum metal Ti–23Nb–0.7Ta–2Zr–1.2O (TNTZ-O) alloys were synthesized by cold crucible levitation melting with the objective of investigating the influence of oxygen on the deformation mechanisms. By tensile tests, electron backscatter diffraction, atomic force microscopy and transmission electron microscopy analyses, we showed that the deformation in the TNTZ-O alloy is only accommodated by dislocation slip. Thus, the addition of oxygen suppresses the formation of α′′ martensite and prevents the twinning deformation mechanism, which were both observed in the TNTZ alloy. In addition, in situ tensile tests in a transmission electron microscope showed that conventional a/2 1 1 1 dislocation slip occurs widely in the TNTZ-O alloy. Screw dislocations have a lower mobility than non-screw dislocations. Cross-slip is shown to be easy and multiplication of dislocations by a double cross-slip mechanism occurs extensively, leading to the formation of large slip bands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics of Biomedical Beta-Type Titanium Alloy Subjected to Coating

Beta-type titanium alloys used in biomedical applications have been developed all over the world. In particular, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) is one of beta-type titanium alloys for biomedical applications that has been developed by the authors in Japan. Although TNTZ is composed of non-toxic elements such as niobium, tantalum, and zirconium, it still lacks bioactivity, which is the ability ...

متن کامل

Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged ConditionsThis Paper was Originally Published in Japanese in J. Japan Inst. Metals 72 (2008) 960--964

The effect of oxygen content on the microstructure and mechanical properties of the Ti-29mass%Nb-13mass%Ta-4.6mass%Zr (TNTZ) alloy was investigated in this study. The microstructural observation of TNTZ alloys, containing 0.1–0.4mass% oxygen, subjected to solution treatment shows the presence of a single phase. With an increase in oxygen content, the hardness, tensile strength, and Young’s modu...

متن کامل

Influence of Alloy Elements on the Osteoconductivity of Anodized Ti-29Nb-13Ta-4.6Zr Alloy

Anodizing is expected to be an effective method to improve the osteoconductivity of the Ti-29Nb-13Ta-4.6Zr (TNTZ) alloy because the bioactivity of anodized Ti is good. However, it is not known how the alloy elements influence the surface roughness, composition, hydrophilicity, and osteoconductivity of the anodized film on the Ti alloy. In this study, we investigated the effects of anodizing on ...

متن کامل

Beneficial effect of Cu on Ti-Nb-Ta-Zr sputtered uniform/adhesive gum films accelerating bacterial inactivation under indoor visible light.

This article presents the evidence for the significant effect of copper accelerating the bacterial inactivation on Ti-Nb-Ta-Zr (TNTZ) sputtered films on glass up to a Cu content of 8.3 at.%. These films were deposited by dc magnetron co-sputtering of an alloy target Ti-23Nb-0.7Ta-2Zr (at.%) and a Cu target. The fastest bacterial inactivation of E. coli on this later TNTZ-Cu surface proceeded wi...

متن کامل

Biomedical titanium alloys with Young’s moduli close to that of cortical bone

Biomedical titanium alloys with Young's moduli close to that of cortical bone, i.e., low Young's modulus titanium alloys, are receiving extensive attentions because of their potential in preventing stress shielding, which usually leads to bone resorption and poor bone remodeling, when implants made of their alloys are used. They are generally β-type titanium alloys composed of non-toxic and all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017